Exam. Code : 103202
Subject Code : 1026

B.A./B.Sc. $2^{\text {nd }}$ Semester MATHEMATICS
 Paper-II (Calculus)

Time Allowed-2 Hours] [Maximum Marks-50
Note :- There are eight questions of equal marks. Candidates are required to attempt any four questions.

1. (a) Discuss the continuity of the function :

$$
f(x, y)=\left\{\begin{array}{cc}
x y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) ; & (x, y) \neq(0,0) \\
0 ; & (x, y)=(0,0)
\end{array}\right.
$$

at the point $(0,0)$.
(b) If $f(x, y)=\log \left(x^{2}+y^{2}\right)+\tan ^{-1} \frac{y}{x}$, then prove $f x x+f y y=0$.
(c) Let $f(x, y)=\left\{\begin{array}{cc}x y\left(\frac{x-y}{x+y}\right) ; & (x, y) \neq(0,0) \\ 0 \quad ; & (x, y)=(0,0)\end{array}\right.$ show that fxy $(0,0) \neq f y x(0,0)$.
2. (a) Discuss the differentiability of $f(x, y)=\sin x+\sin y$; $(x, y) \in R^{2}$.
(b) Show that for the function :
$f(x, y)=\left\{\begin{array}{cc}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) ; & (x, y) \neq(0,0) \\ 0 & ;(x, y)=(0,0)\end{array}\right.$
conditions of Young's Theorem are not satisfied, even though $\mathrm{fxy}(0,0)=\mathrm{fyx}(0,0)$.
(c) Show that the equation $x^{2}+x y+y^{2}=7$ defines y as a function of x in the neighbourhood of the point (2, 1). Find derivatives of this function at $x=2$.
3. (a) If $z=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, prove that $x \frac{d z}{d x}+y \frac{d z}{d y}=\tan z$.
(b) Obtain Taylor expression for $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}$ about $(1,2)$ upto third term.
(c) If $y_{1}=\cos x_{1}, y_{2}=\sin x_{1} \cos x_{2}, y_{3}=\sin x_{1}, \sin x_{2}$, $\cos x_{3} \ldots \ldots \ldots \ldots y_{n}=\sin x_{1}, \sin x_{2}$ \qquad $\sin x_{n-1}$ $\cos x_{n}$, then find $\frac{\partial\left(y_{1} y_{2}, \ldots \ldots, y_{n}\right)}{\partial\left(x_{1} x_{2} \ldots \ldots, x_{n}\right)}$.
4. (a) Find the envelope of the family of circles $x^{2}+y^{2}-2 a x \cos \theta-2 a y \sin \theta=c^{2}$ where θ is a parameter.
(b) Find all the points of maxima and minima of the function $f(x, y)=x^{3}+y^{3}-63(x, y)+12 x y$. Also discuss the saddle points (if any) of the function.
(c) Find the evolute of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ regarding it as an envelope of its normal.
5. (a) Find the shortest distance from the origin to the hyperbola $x^{2}+8 x y+7 y^{2}=225$.
(b) Change the order of integration and hence evaluate the integral $\int_{0}^{4 a} \int_{\frac{\frac{x}{2}_{20}^{20}}{2 \sqrt{a x}}}^{2 \sqrt{2}} d y d x$
6. (a) Evaluate $\iiint \frac{\mathrm{dxdydz}}{\sqrt{1-\mathrm{x}^{2}-\mathrm{y}^{2}-\mathrm{z}^{2}}}$ over the positive octant of sphere $x^{2}+y^{2}+z^{2}=1$.
(b) Evaluate $\iiint \mathrm{z}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{dx} \mathrm{dy} \mathrm{dz}$ over the region $x^{2}+y^{2} \leq 1,2 \leq z \leq 3$.
7. (a) Find the area of the region bounded by $y=2-x^{2}$ and $y=x$.
(b) Find the area enclosed by $y^{2}=x^{3}$ and $y=x$.
8. (a) Find the volume of the right circular cone with basie radius r and height h.
(b) Find the volume bounded by the surfaces $x^{2}+y^{2}=a^{2}$ and $\frac{x^{2}}{r}+\frac{y^{2}}{s}=2 z$ where $r, s>0$.

